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Abstract

Although it is well known that aggregate variables have slow-moving stochastic com-

ponents, research on macroeconomic fluctuations has focused primarily on high-frequency

movements of the data. I document some interesting lower-frequency facts in U.S. post-

war data and investigate whether dynamic stochastic general equilibrium (DSGE) models

can explain these facts. One fact of particular interest is that hours worked per capita is

negatively correlated with both output per capita and total factor productivity (TFP) at

lower frequencies, in stark contrast to the positive comovement of these three variables at

high frequencies. I show that this lower-frequency fact is puzzling for many DSGE models

and explore a variety of candidate solutions to this puzzle. I demonstrate that preferences

which depend on a time-varying reference level of consumption (i.e., a “living standard”)

can rationalize the observed patterns. Finally, I discuss the relative merits of the “living

standards” interpretation of the model to alternative interpretations.
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1 Introduction

This paper investigates lower-frequency macroeconomic fluctuations: that is, movements in

aggregate variables at frequencies below the business cycle but above long-term trend. The

dynamic stochastic general equilibrium (DSGE) models that modern macro uses to understand

business cycles have implications for the movements of economic variables at all frequencies

and thus provide a natural framework for this investigation.

I begin by documenting some interesting facts about lower-frequency fluctuations in postwar

U.S. data. One fact of particular interest is that extended periods of rapid (stagnant) total

factor productivity (TFP) growth are accompanied by fast (slow) growth in output per capita

and prolonged decreases (increases) in hours worked per capita. Thus, at lower frequencies,

hours worked are negatively correlated with both TFP and output. This is in stark contrast to

the well-known, strong positive correlation between these three variables at high frequencies.1

Business cycle models have been constructed to capture this high-frequency comovement,

but these models generate a positive correlation between labor input and TFP/output at lower

frequencies as well. In order to explore a number of candidate solutions to this model failure, I

consider a prototype model that allows for various specifications of primitives (i.e., preferences,

technology, government, and the stochastic shock processes). One special case is a textbook

real business cycle (RBC) model, e.g., Cooley and Prescott (1995), which proves useful for

illustrating why standard models perform poorly at lower frequencies. The challenge is then

to identify the ingredients that help explain the lower-frequency patterns and to provide an

economically meaningful interpretation of these ingredients.

The key relationship in the model is the equilibrium condition equating the marginal cost

of an extra hour of market work to its marginal benefit. This can be written as

mplt = wedget +mrst,

where mpl denotes the (log) marginal product of labor and mrs denotes the “standard” (log)

marginal rate of substitution between consumption and leisure. By “standard”, I mean the

marginal rate of substitution is a time-invariant function of market consumption and market

hours worked. In the textbook RBC model, the wedge is 0 in all periods, but more generally,

it can vary over time. The wedge may reflect deviations between the marginal product of

labor and the real wage paid by firms (e.g., due to sticky prices), deviations between the wage

and the household’s marginal rate of substitution (e.g., due to labor income taxes, efficiency
1A precise definition of high- and lower-frequency fluctuations is provided in Section 2.
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wages, or wage setting by unions), or deviations between the household’s true marginal rate of

substitution and the “standard” measure (e.g., due to habit formation or home production).

To generate the patterns in the data, the model must have a wedge that is positively corre-

lated with and at least as volatile as TFP at lower frequencies. I consider whether any of the

aforementioned causes of the wedge have these features. Some explanations of the wedge, such

as price stickiness and efficiency wages, can be ruled out on theoretical grounds. I show that

others, such as labor income taxes, do not exhibit the required patterns, at least for postwar

U.S. data. Finally, drawing on the idea of a reference level of consumption from the habit

formation literature, I show that preferences with a time-varying living level norm that closely

tracks the permanent component of TFP can rationalize the lower-frequency fluctuations in

the data.2 This formulation of the reference norm is meant to capture the idea that extended

periods of fast economic growth can lead to a preference shift, causing individuals to consume

(given their income level) more goods and/or leisure.

I am certainly not the first to consider the role of the labor wedge in explaining movements

in aggregate data. Hall (1997) demonstrates that this wedge varies significantly over time and

presents evidence of its importance for explaining employment fluctuations over the business

cycle. A number of papers have followed Hall’s analysis by building DSGE models that are

explicit about the sources of high-frequency variation in the wedge [see Chari, Kehoe, McGrat-

tan (2004), Gali, Gertler, Lopez-Salido (2005) and references therein]. On the other hand,

the model presented herein is the first to analyze the lower-frequency movement of the labor

wedge in a general equilibrium framework. Mulligan (2002) and Gali (2005) have also written

on the lower-frequency labor wedge, but the use of a DSGE model is beneficial as it facilitates

accounting for the movements of a number of aggregate variables in response to driving forces.

To construct lower frequency fluctuations, I remove a linear trend (a fluctuation of infinite

periodicity) and fluctuations more frequent than every 32 quarters from the data. Although

this approach to characterizing slow-moving fluctuations is novel, the interest in sub-cyclical

movements is not. King, Plosser, and Rebelo (1988) look at linearly detrended data and

mention the low correlation between hours and output, and Hall (1997) uses a polynomial de-

composition of time series to construct “medium frequency” fluctuations that are qualitatively

similar to my lower frequency fluctuations. Neither of these papers focus on building a model

to explain the fluctuations below business cycle frequencies. Comin and Gertler (2004) build
2Section 5.1 describes one way of decomposing TFP into permanent and transitory components. One can

think of the living level norm as a reference point that adjusts smoothly over time (hence, the omission of

changes in economic performance that are considered temporary) and that is significantly influenced by the

average level of living in society as a whole.
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a model to explain many features of “medium term” business cycles, defined as fluctuations of

periodicity less than 200 quarters.

Economists have much to gain from understanding lower-frequency fluctuations. Because

DSGE models have predictions for fluctuations at all frequencies, lower frequencies could be

used to discipline business cycle models and possibly distinguish between alternative business

cycle theories. This discipline would also be useful for improving these models as tools for

policy analysis and for analyzing specific episodes of interest, such as the large increase in

labor input in the 90s, as part of lower-frequency changes in the economy. To this end, one

key contribution of this paper is extending the scope of DSGE models to evaluate sub-cyclical

movements. This requires using solution methods that can handle persistent deviations from

the balanced growth path.

Section 2 documents some facts about lower-frequency fluctuations in postwar U.S. data,

including the negative correlation of hours worked with both TFP and output. Section 3

presents a prototype DSGE model, which serves as a unifying framework for considering various

explanations of the facts. Section 4 demonstrates that the lower-frequency relationship between

hours worked and TFP/output is a puzzle from the view of a textbook RBC model. Moreover,

variants of the textbook model found in the business cycle literature do not provide satisfactory

explanations of the puzzle. Section 5 demonstrates how a living-standard model resolves the

puzzle and discusses various interpretations of the model. In Section 6 I offer some concluding

remarks, and Sections 7 and 8 describe the data construction and technical aspects of the

model in more detail.

2 High- and Lower-Frequency Facts

In this section I define high- and lower-frequency fluctuations and then describe some key

stylized facts that emerge from postwar U.S. data. I use a band-pass filter (Baxter and King

1999) and a linear time trend to decompose individual time series into three parts: variations

at frequencies between 2 and 32 quarters (high frequencies), those between 32 and an infinite

number of quarters (lower frequencies), and the linear trend (the zero frequency). Figure 1

shows this frequency decomposition in the time domain. It plots log real GDP per capita, the

trend associated with a high-pass filter with cutoff frequency of 32 quarters [HP (32)], and a

linear trend. The decomposition of the data into high and lower frequencies is given by

Data = Data−HP(32) Trend︸ ︷︷ ︸ + HP(32) Trend− Linear Trend︸ ︷︷ ︸ + Linear Trend

= High Frequencies + Lower Frequencies + Linear Trend.
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This definition of high and lower frequencies is useful for a couple of reasons. At the

high end of the frequency spectrum, the choice of 32 quarters as the cutoff between high and

lower frequencies enables a comparison with business cycle studies that filter the data with

a Hodrick-Prescott filter, a close approximation to a high-pass (32) filter.3 At the low end,

neoclassical growth theory predicts that variables will grow at a constant rate (i.e., with a

linear trend) in the absence of shocks. Finally, with this three-way decomposition, none of the

movements in the data are excluded from the analysis. DSGE models have implications for

fluctuations at all frequencies, and this decomposition will provide a compact, albeit stylized,

way of comparing fluctuations from model simulations with those in the data.

I focus on the volatility, persistence, and comovement of a set of aggregate variables in-

cluding output, consumption, investment, hours worked, labor and total factor productivity,

and the net real return to capital. Tables 2 and 3 display a set of moments for the high-

and lower-frequency fluctuations of each of these variables. I use quarterly data from 1947:1

- 2008:1, but the reported moments cover 1950:1 - 2005:1 because the high-pass trend is a

moving average which requires three years of both past and future data.4

The tables display some interesting statistics. First, the lower-frequency fluctuations are

large; in fact, for all variables except investment, the lower frequencies are more volatile than

the high frequencies. Second, the correlation between productivity (both labor and total

factor) and output is higher at lower frequencies. This fact will lead me to consider a model in

which changes in productivity have a central role in driving the lower-frequency fluctuations.

The most striking difference between the moments at different frequencies is the comove-

ment between hours worked and output. At high frequencies, these two variables exhibit a

strong positive correlation (0.86), but at lower frequencies, they are modestly negatively cor-

related (-0.31). The same relationship holds between hours worked and TFP, which display

a positive correlation (0.11) at high frequencies and a stronger negative correlation (-0.61) at

lower frequencies. Relatedly, both labor productivity and TFP are less volatile than output

at high frequencies but more volatile at lower frequencies. At high frequencies, the positive

comovement of productivity and hours worked leads to output fluctuations which are amplified

relative to productivity, while the negative comovement at lower frequencies is associated with

dampened output fluctuations.

Figures 2 - 4 shed light on the differences between the high- and lower-frequency comove-
3As noted by King and Rebelo (1999), a fairly conventional definition of the business cycle, following Burns

and Mitchell (1946) and Prescott (1986), is fluctuations in economic time series that have a periodicity of eight

years or less.
4The data appendix (Section 7) provides a detailed description of the construction of all variables.
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ments of hours worked with output/TFP. The top panel of Figure 2 shows the deviations of log

real GDP per capita and log hours worked per capita from their respective linear trends, while

the bottom panel replaces log GDP with log TFP. 5 Recall that removing a linear trend leaves

both the high- and lower-frequency fluctuations, and thus, the linearly detrended series are a

compact way to display all fluctuations at once. The positive relationship between TFP/GDP

and hours worked from quarter to quarter (high frequencies) and the negative relationship

from decade to decade (lower) are evident in Figure 2.

Figure 3 shows the high and lower frequencies of GDP and hours worked. At high fre-

quencies, hours worked and GDP move together, while at lower frequencies, hours worked are

high when output is low and vice versa. Figure 4 replaces GDP with TFP. The plots reflect

the weak positive correlation between TFP and hours at high frequencies and the negative

correlation at lower frequencies. The high-frequency relationship between hours worked and

output should come as no surprise: recessions (expansions) are times of low (high) market

output and market work, and TFP is positively correlated with both variables, although its

correlation with hours worked is relatively weak. The lower-frequency relationship between

these variables may be surprising, but it is influenced by two well-known patterns. First,

output and productivity grew faster than average during the 50s and 60s and then slowed over

the next 25 years. Thus, relative to a linear trend, these variables were high in the 60s and

70s. Second, hours worked fell from 1951 to 1975 and then gradually rose, reaching their

initial level in the late 90s.6

Another way to quantify these patterns is to compute the comovement of the growth rates of

the lower-frequency fluctuations. These include Corr(∆Y,∆N) = 0.51, Corr(∆Y,∆A) = 0.73,

and Corr(∆A,∆N) = −0.10. The negative correlation between the growth rates of TFP and

hours worked will be useful for evaluating the performance of the theoretical models studied in

later sections. It is also interesting to note the growth rates of the lower-frequency fluctuations

of these two variables have opposite signs in 55% of the quarters in the sample period. Lower-

frequency TFP and hours worked move together at the major turning point of the productivity

series (early 70s) and for brief periods of vigorous expansions (mid 60s) and severe recessions
5Note that the trend in hours worked per capita over this sample period is basically zero (-0.015%), so the

raw data series for hours looks virtually identical to the detrended series in the figures. Moreover, the hours

worked moments reported in Table 3 do not change significantly if a linear trend of 0 is removed rather than

the actual linear trend.
6The literature on the productivity and output growth slowdown is so expansive that I opt not to list

references. The U-shaped pattern in hours worked can be found in King et. al. (1988) and Ingram et. al.

(1997). Both studies use an hours worked series constructed using data from the Current Population Survey.

McGrattan and Rogerson (2004) find a similar pattern in decennial census data.
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(early 80s), but they generally move in opposite directions.

To summarize, the lower-frequency comovement of hours worked with output and TFP is

very different than the comovement of these variables at business cycle frequencies. At lower

frequencies, the fast productivity growth of the 50s and 60s was accompanied by rapid growth

in output per capita and decreasing hours worked per capita. The slower productivity growth

from the 70s through the 90s coincided with slower growth in output and, after a decline in the

early 70s, a gradual increase in hours worked through the end of the sample period. As I will

show in Section 4, many business cycle models have predictions for lower-frequency fluctuations

that are at odds with the data. Because models of economic fluctuations have predictions for a

number of aggregate variables, a satisfactory explanation of the lower-frequency comovements

will also be required to be roughly consistent with other moments reported in Tables 2 and 3.

2.1 Robustness Checks

The definitions of aggregate variables in the previous section are fairly standard in the business

cycle literature, but the inclusion of lower-frequency fluctuations in the analysis raises the

question of whether alternative definitions would have much impact on the statistics reported

above. I briefly discuss the most notable alternatives and the impact they have on the lower-

frequency facts.

2.1.1 Definition of Per Capita

In Section 2, the population was taken to be individuals of age 16-64, a natural choice amongst

popular alternatives, namely individuals older than 16 and those of all ages, for two reasons.

First, some measure of the working age population seems more appropriate than using total

population when one of the objectives is to explain labor input, especially if one’s model

abstracts from the decision to send children into the workforce. Second, the ages 16-64 were

chosen rather than 16 and above because compositional changes in the age of the population

have occurred over the sample period, while the primary age of retirement has remained 65

years of age.

The alternative definitions of the population, however, do not significantly change the facts

reported above. The moments reported in Tables 2-3 are qualitatively similar, while the

figures change only slightly. When the total population is used rather than the working-age

population, hours worked per capita reaches its trough between 1967-1971 rather than 1975-

1980. When retirement-aged individuals are included in the population, hours worked per
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capita are not as high in the 90s as they are in the figures above. The stylized fact that

lower-frequency TFP and output per capita are high (low) when hours worked per capita are

low (high), however, is robust to these changes.

2.1.2 Including the Public Sector

The statistics reported above were for the private sector, but one may be concerned that these

statistics omit important changes in the size of the public sector over the postwar period.

I thus consider broader measures of the aggregate variables, with the most notable changes

being (i) hours worked are total domestic hours rather than total private sector hours and (ii)

government capital and consumer durables are included in the capital stock while the flows of

services from these stocks are included in output.7 The main changes in the statistics reported

above are that the lower-frequency correlation of hours worked with output and TFP are not

as low: 0.01 and -0.28, respectively. Because of the increase in government hours worked in

the 50s and 60s, labor input did not decrease as rapidly. Still, hours were decreasing over

this period while TFP grew extremely quickly. Moreover, I will show that the lower-frequency

correlations are still substantially lower than what is predicted by standard business cycle

models.

2.1.3 Definition of Leisure

Ramey and Francis (2005) consider more involved constructions of both the numerator and

denominator of hours worked per capita. For the denominator, they argue that if one wants

to limit the time endowment to the potential workforce (as opposed to including the total

population), it should be done in a consistent manner that reflects the ability to engage in

productive activities. Thus, they adjust the time endowment of individuals to reflect health

as well as age. For the numerator, they adjust hours worked to include government work, time

spent in formal schooling, and work at home. Their calculations imply significant changes to

the time series for leisure, the biggest of which occur during the first half of the 20th century.

For the time period under consideration here (1947-2005), their time series for leisure and

mine (simply the constant per period time endowment minus time spent in market work) have

qualitatively similar movements.
7See Section 7 for complete details on the data construction.
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3 The Prototype Model

Formal general equilibrium models require an explicit characterization of technology, the

stochastic impulses that shock the economy, preferences, the information available to eco-

nomic agents, and the market structure. Because of the wide range of possible specifications

for each of these components, multiple explanations of the stylized fact documented in the

previous section may exist. In this section I describe a unifying framework for evaluating

many potential explanations and discuss the methods used to solve the model.

3.1 Environment

I consider a closed-economy stochastic neoclassical growth model. There is a single output

good that is used for consumption, investment, and government spending, and the aggregate

resource constraint for the economy is Ct+It+Gt = Yt. The government funds its expenditures

by levying distortionary taxes on income. All economic agents are price takers and have perfect

information about the state of the economy.

3.1.1 Technology

The aggregate production technology is given by

Yt = A1−α
t F (Kt, Nt) = A1−α

t Kα
t N

1−α
t (1)

where Yt is output, Kt is the physical capital stock, Nt is labor input, and A1−α
t is an index of

TFP.8

The capital accumulation technology is

Kt+1 = (1− δ)Kt + It. (2)

3.1.2 Stochastic Driving Force

Following Kydland and Prescott (1982), random shocks to productivity are taken as the driving

force of the model’s fluctuations. TFP evolves according to a Markov process

At = γA
t At−1,

8At is raised to an exponent of 1− α simply to allow for a cleaner normalization of the model’s variables in

the process of making them stationary for the solution procedure.
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where the growth rate of TFP γA
t is exogenous and drawn from distribution ΓA

t . Various spec-

ifications of ΓA
t are used in the business cycle literature, and I will consider some alternatives

below. Throughout I use the notation γV to denote the growth rate of a variable V .

3.1.3 Preferences

There is a representative household whose preferences are given by

max
{Ct,Nt}

E0

∞∑
t=0

βtu(Ct, Nt;Xt),

where the momentary utility function is

u(Ct, Nt;Xt) =

[
κ+

(
Ct
Xt

)1−η

1−η − b
N1+ν

t
1+ν

]1− 1
σ

− 1

1− 1
σ

(3)

with ν, b > 0, σ ≥ 0, and 0 ≤ η ≤ 1, and in the case η = 1 or σ = 1, the appropriate power

function is replaced by the log function. The constant κ is set to ensure that the marginal

utility of consumption is always non-negative.9 Besides noting that the household takes it as

an exogenous state variable, I postpone discussion of X for a few paragraphs.

The parameters of the utility function govern the household’s choice of consumption and

labor supply as follows: ν is a determinant of the compensated wage elasticity of labor supply;

η governs the income elasticity of labor supply; b is a scaling parameter used to set the steady

state level of labor supply; and conditional on the other parameters, σ governs the (average)

willingness of the household to substitute consumption through time.10

This momentary utility function nests several specifications used in the literature. For

example, if η = 1 and σ = ∞,

u(Ct, Nt;Xt) = ln (Ct)− b
N1+ν

t

1 + ν
− ln (Xt) .

With these parameter values, X enters the utility function in an additively separable way and

has no effect on the household’s decisions. In this case, 1
ν is the Frisch elasticity of labor supply.

A further special case is the reduced-form of the indivisible labor model of Rogerson (1988) as
9κ will be set to 0 in all the specifications of the model considered in the subsequent sections.

10For parameterizations in which preferences are nonseparable, the intertemporal elasticity of substitution

(IES) will depend upon allocations and will vary over time. σ is chosen so that the model’s steady-state IES

is consistent with estimates of the IES from the literature.
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used by Hansen (1985), which is obtained by setting ν = 0.11 If instead, η = 0 and σ = ∞,

utility takes the functional form used by Greenwood, Hercowitz, and Huffman (1988).

Models with state variables in preferences are common in macroeconomics. Examples in-

clude models with ‘habit formation’ [e.g., Abel (1990,1999); Campbell and Cochrane (1999)],

home production [e.g., Benhabib, Rogerson and Wright (1991)], and leisure-enhancing pro-

duction [Greenwood and Vandenbroucke (2005), Kopecky (2005)]. In Section 5, I consider

alternative functional forms for and economic interpretations of the state variable X, but for

now just note that, as long as X does not enter the utility function in a separable way, it affects

both the marginal rate of substitution (MRS) between consumption at different dates and the

MRS between contemporaneous consumption and leisure. It can be shown that an increase in

the living standard increases both marginal rates of substitution: increasing the taste for cur-

rent consumption relative to future consumption and for leisure relative to contemporaneous

consumption.

Empirical observations motivate restrictions on the functional forms that X can take. In

the long-run, many aggregate variables grow at roughly the same rate (Kaldor 1957) while

leisure is relatively constant (Ramey and Francis 2005). For the model to have a balanced

growth path (BGP) in which leisure is constant
(
γN = 0

)
while trending variables grow at

the same rate
(
i.e., γC = γK = γI = γY = γA ≡ γ

)
, either η = 1 or γX = γ.12 η = 1 is the

well-known requirement pointed out by King, Plosser and Rebelo (1988a) for obtaining a BGP

when preferences are a stable function of only consumption and leisure. This requires that

the income and substitution effects of a change in the wage are directly offsetting. Based

on estimates of income and substitution effects from the labor supply literature (Blundell and

MaCurdy 1999),13 the relaxation of this requirement appears to have some merit. By including

a trending variable in preferences that grows at the same rate as other trending variables in

the long-run, the model can exhibit balanced growth without requiring η = 1.
11A utility function of the form u(Ct, Nt) = ln (Ct)+ln

(
N −Nt

)
, where N is the per period time endowment,

is closely approximated by the momentary utility function (equation 3) with parameters η = 1, σ = ∞ and

ν = 0.25.
12The requirement that either η = 1 or γX = γ is derived from evaluating the first-order condition for labor

supply, −uN (Ct,Nt;Xt)
uC(Ct,Nt;Xt)

= A1−α
t FN (Kt, Nt), along a balanced growth path of the model.

13Tables 1 and 2 of Blundell and MaCurdy (1999) report estimates of the uncompensated wage elasticity

and income elasticity from a number of studies. The income elasticity (income effect) is typically substantially

smaller in magnitude than the uncompensated wage elasticity (substitution effect).
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3.1.4 Government

The government raises revenues by levying distortionary taxes on capital and labor inputs

and uses these revenues to fund its expenditures. Unused revenue is rebated lump-sum to

households in each period, so that budget balance holds. The government is fully characterized

by its budget constraint

Gt + TRt = τN,tWtNt + τK,tRtKt,

where TRt are lump-sum transfers to households, τN,t and τK,t are distortionary taxes on labor

and capital income, and Wt and Rt are the wage and return to capital. From the view of

private agents, tax rates, transfers, and spending are exogenous processes, and for simplicity,

agents expect that future taxes and transfers (relative to total output) will remain at their

current rates.

3.2 Equilibrium

It is straightforward, but tedious, to define a competitive equilibrium for this economy. There-

fore, I simply state the necessary conditions that any competitive equilibrium allocation

{C,K,N}∞t=0 must satisfy.14 These include

1. the intertemporal Euler equation

1 = βEt

{
uC (Ct+1, Nt+1;Xt+1)

uC (Ct, Nt;Xt)
[
(1− τK,t+1)A1−α

t+1 FK (Kt+1, Nt+1) + 1− δ
]}

, (4)

2. the intratemporal equilibrium condition

− uN (Ct, Nt;Xt)
uC (Ct, Nt;Xt)

= (1− τN,t)A1−α
t FN (Kt, Nt) (5)

3. and the resource constraint

Ct +Kt+1 − (1− δ)Kt +Gt = A1−α
t F (Kt, Nt) . (6)

3.3 Solution Method

I use recursive methods to solve for the equilibrium, and thus, it is necessary to transform the

model so that all variables are stationary. This is done by scaling all trending variables by
14A full characterization of the equilibrium allocation would also include initial and transversality conditions.

Note that equilibrium prices are given by the marginal product of the production technology with respect to

the relevant inputs.
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the variable Xt. A “hat” over a variable represents the stationary version of that variable(
e.g. Ĉt = Ct

Xt

)
.

The recursive formulation for the problem is

V (St) = max{
Ĉt,Nt,K̂

′
t

} {
u

(
Ĉt, Nt

)
+ βEth

(
γX

t+1

)
V (St+1)

}
subject to Ĉt + K̂ ′

t − (1− δ)K̂t + Ĝt = Â1−α
t K̂α

t N
1−α
t

where K̂ ′
t = γX

t+1K̂t+1. St =
{
K̂t,

{
Astate

t

}
,
{
Xstate

t

}
, τK,t, τN,t, Ĝt

}
, where

{
Astate

t

}
and{

Xstate
t

}
are sets of state variables that are needed for forming expectations and for deter-

mining current levels of productivity A and the preference variable X. Given the preference

specification in equation (3), h
(
γX

t+1

)
= 1.

The model is solved numerically using policy function iteration, solving for nonlinear pol-

icy functions Ĉ(St), N(St), and K̂ ′(St) over the multi-dimensional, continuous state space St.

Specific examples of
{
Astate

t

}
and

{
Xstate

t

}
will be given in following sections when I consider

various specifications of the model’s primitives. For now, note that the specifications consid-

ered require between 2 and 8 state variables. As the number of state variables increases, one

faces a curse of dimensionality. To address this computational challenge, I use Smolyak’s al-

gorithm for approximating functions of high-dimensionality (Krueger and Kubler 2004). This

algorithm has been used to solve models with up to 30 state variables, and it proves sufficient

for the models considered below. For readers who are interested, a brief overview of the

solution procedure and further references are provided in the technical appendix.

An alternative approach for solving models with multiple state variables is to take a linear

approximation around the deterministic steady state of the economy. I choose to use a

nonlinear solution method because it is more accurate in general and noticeably so for some

specifications of the model. As an example, in models with very persistent shocks such as those

considered in Section 5, state variables γX and K̂ vary significantly from their steady state

values for plausible realizations of productivity growth. Because the accuracy of a linearized

approximation decreases as the model’s state variables move further away from their steady

state values, a nonlinear solution method is preferable.

4 A Puzzle

In this section I demonstrate that the lower-frequency comovement of hours worked with

output and productivity is a puzzle from the view of many DSGE specifications found in the
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business cycle literature. I first use a textbook RBC model to illustrate the primary difficulty

encountered by standard specifications. I then add distortionary labor income taxes to the

model to demonstrate that taxes alone are not sufficient for resolving the puzzle. Finally, I

show that models with more persistent productivity shocks can not resolve the puzzle without

having other counterfactual predictions. This analysis points towards a DSGE specification,

fleshed out in Section 5, that can rationalize the lower-frequency patterns in the data.

4.1 Textbook RBC Model

The unifying framework described in Section 3 allows for various specifications of the distri-

bution of productivity growth shocks, preferences, and taxes. A textbook RBC model (e.g.,

Cooley and Prescott 1995) specifies these ingredients as follows. First, the stochastic process

for TFP growth consists of transitory shocks around a constantly growing trend. Formally,

γA
t =

At

At−1
=

Tt

Tt−1

Zt

Zt−1
= γT Zt

Zt−1
,

where γT is the constant growth rate of trend productivity Tt, while Zt is a stationary cyclical

component that reflects transitory shocks. Letting lowercase letters denote logged variables

(i.e., zt = ln (Zt)), log productivity growth γa follows a Markov process:

γa
t = µγ + zt − zt−1

zt = ρzzt−1 + εz,t, where εz v i.i.d. N(0, σ2
z), (7)

where µγ = ln
(
γT

)
. Second, preferences are defined over consumption and time spent in

market work only; that is, parameters will be chosen so that X enters preferences in an

additively separable way. Finally, this specification abstracts from time-varying taxes and

government spending.

The state space for this model specification is St =
{
K̂t, Ât

}
with Ât = zt. The current

value of the transitory shock to productivity is all that is needed to form expectations of future

productivity growth. Since Xt is additively separable in the utility function, it does not appear

in either the intertemporal MRS for consumption or the intratemporal MRS between leisure

and consumption. Xt is needed to normalize the other variables in the model, but simply

letting X grow at a constant rate requires no additional state variables.

4.1.1 Choosing Parameter Values

Standard Parameters Many of the model parameters are selected to ensure agreement

with observed long-run values for key postwar U.S. aggregates. These parameters will be
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set the same way in all versions of model considered in this paper. The mean growth rate

of technological progress, µγ , is chosen to imply a 2.1 percent annual average growth rate of

real per capita output, and the discount factor, β, is then set to imply an average real return

to capital of 7.4 percent per year. Capital’s share, α, is set to 0.333, consistent with broad

evidence, while the depreciation rate, δ, implies average deprecation of 6 percent per year.

The parameter governing the steady-state level of labor supply, b, is set to imply an average of

23 percent of available time spent in market work. The methods used to set these parameters

are quite standard and are described in Cooley and Prescott (1995).

Preference Parameters A couple of the preference parameters are pinned down by long-

run restrictions or functional form assumptions. As discussed in Section 3.1, η = 1 is required

for the model to be consistent with a balanced growth path in which hours worked are invariant

to the level of productivity. σ = ∞ makes utility log-separable in consumption and hours

worked

u(Ct, Nt;Xt) = ln (Ct)− b
N1+ν

t

1 + ν
− ln (Xt) (8)

and implies an intertemporal elasticity of substitution (IES) of 1.15

The other parameter that governs the household’s preferences for consumption and leisure

is taken from estimates from microeconomic studies of labor supply. Because σ = ∞, ν is

equal to the reciprocal of the intertemporal (Frisch) elasticity of labor supply. The first-order

condition governing labor input (equation 5) takes the form

bNν
t Ct = (1− τN )Wt.

Letting lowercase letters denote logged variables and dropping uninteresting constants,

nt =
wt − ct
ν

. (9)

Using this equation, the intertemporal (Frisch) elasticity of labor supply 1
ν is estimated to be in

the 0.5-1 range (Blundell and MaCurdy 1999), so I set ν = 1.5. Many business cycle researchers

have argued that the elasticity of labor supply should be much larger in a representative agent

model than estimated by microeconomic studies because of the importance of the extensive

margin (employment vs. unemployment). Note from equation (9) that a larger elasticity will
15Many business cycle models consider preferences that do not require IES = 1, e.g., Cobb-Douglas prefer-

ences u (C, N) =
(Cζ(1−N)1−ζ)1−

1
σ

1− 1
σ

. These preferences, however, still have the feature that the intratemporal

MRS is linear in consumption (η = 1), and thus, models with these preferences will perform similarly to the

textbook RBC model in regards to explaining the lower-frequency comovement of labor input with output and

productivity.
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affect the magnitude of the labor supply response to a shock, but it will not affect the sign.

Thus, the model’s implications for the lower-frequency comovement of labor input with output

and TFP is robust to the choice of ν.

Productivity Parameters The parameters for the stochastic process for productivity shocks

(equation 7) are chosen using standard procedures, e.g., section 4.1 of King and Rebelo (1999).

The parameters are ρz = 0.95 and σz = 0.0105.16

The parameters for the textbook RBC specification are given in Table 4.

4.1.2 Results

I conduct two experiments to assess the model’s ability to capture the lower-frequency fluc-

tuations observed in postwar U.S. data. First, I simulate the model many times and report

the average moments across these simulations, producing tables similar to Tables 2 and 3. I

also calculate the variance (across simulations) of the moments, which is useful for making

statements about how (un)likely it is that the model could produce the patterns seen in the

data. Second, I calculate the Solow residual from actual data and then simulate the model

using this residual as the forcing process. Implicitly, I assume that the model and data are the

same in terms of their Solow residual, and ask whether they are similar along other dimensions

(i.e., hours worked and output). Because this experiment only uses a subset of the stochastic

shocks that hit the economy, the fit between the simulated and actual data is unlikely to be

extremely close. Still, this experiment will be useful for showing how endogenous variables

respond to the driving force.

Tables 5 and 6 show average moments of the high and lower-frequency fluctuations across

200 model simulations. This model does not capture the different relationship that exists

between labor input and output/TFP at different frequencies, as reflected by the high correla-

tion between these variables at both the high and lower frequencies. The difference between

the average correlation of labor input and output (TFP) at high frequencies and that at lower

frequencies is only 0.25 (0.15). Moreover, any particular simulation of the model is unlikely to

produce the lower-frequency comovement observed in U.S. data. The lower-frequency correla-

tion of hours worked and output (TFP) in the data lies more than 10 (19) standard deviations
16Recall that the transitory shock enters the production function as Z1−α rather than Z. Thus, the standard

deviation of the transitory shocks σz is consistent with values typically used in the business cycle literature.
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away from the average moment across simulations.17

The results of simulating the model with the actual U.S. Solow residual as the driving force

are shown in Figure 5, which displays the lower frequencies of the Solow residual (TFP) series

along with the hours worked and output series from the model and the data. The top panel

shows significant divergences between the model’s lower-frequency pattern for hours worked

and the actual movements in the data. The model has difficulty replicating the sizable decrease

in hours worked that took place from the start of the sample through the mid-60s and also the

strong growth in hours that occurred in the last 15 years of the 20th century. When the model

does produce growth in labor input at the end of the sample, actual hours were decreasing.

Moreover, the correlation of the growth rates of the lower-frequencies of model hours worked

and productivity is 0.45, in comparison to -0.11 in the data.

The bottom panel shows the related pattern that the model’s output series is more volatile

at lower frequencies than the TFP series, while actual GDP is less volatile than TFP. The

lower-frequency positive correlation between TFP and hours worked in the simulation leads to

the extra volatility of GDP.

The model’s inability to capture the lower-frequency movements in labor input can be

understood by examining the intratemporal equilibrium condition

nt =
wt − ct
ν

=
yt − ct
ν + 1

=
(1− α)at + αkt − ct

ν + α
, (10)

where the second equality comes from the fact that the wage equals the marginal product of la-

bor. The textbook RBC model has only one force that works against hours worked and output

moving in the same direction at all frequencies: the negative wealth effect associated with a

wage increase. Given the preference specification in equation (8), the wealth effect is summa-

rized by ct. In response to a positive transitory shock, the increase in consumption is less than

that of the wage because of consumption smoothing and hours worked increase. As a result,

the model is able to produce the high-frequency positive comovement of productivity, output,

and labor input. During extended periods of rapid productivity growth (i.e., a sequence of

mostly positive shocks) though, the same forces are at work and contrary to the pattern in the

data, hours worked increase. Put differently, the wealth effect is not strong enough to explain

the negative lower-frequency comovement between hours worked and output/TFP.

Although the textbook RBC model abstracts from many ingredients that are relevant for

explaining features of high-frequency fluctuations (e.g., nominal and real rigidities, government
17The standard deviation (across simulations) of the correlation of lower-frequency labor input with output

(TFP) was 0.10 (0.07).
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spending shocks, a financial accelerator, etc.), these ingredients are typically embedded in

DSGE models in ways that do not significantly change the determination of labor supply

(equation 10) at lower frequencies. For example, models with sticky wages do separate the

wage from the marginal product of labor, but the separation lasts for at most a few years, not

for decades. There are, however, some elaborations of the textbook model, to which I now

turn my attention, that could be of first-order importance for explaining lower frequencies.

4.2 Distortionary Labor Taxes

In a study of U.S. and European economies, Prescott (2004) argues that different tax codes

can explain much of the disparity between the performance of these countries’ labor markets

over the medium-run. His study focuses on two time periods: 1970-1974 and 1993-1996. For

the U.S., he finds that tax rates were lower in the mid 90s than in the early 70s, and hours

worked were higher. This raises the question of whether taxes can explain the lower-frequency

comovement of hours worked with output and TFP over the entire postwar sample period.

Figure 6 shows an average marginal income tax rate series for the U.S. postwar period,

constructed following Barro and Sahasakul (1983), and Figure 7 shows the lower-frequency

movements in hours worked that result from simulating the RBC model with the income tax

rate series and TFP as driving forces. Although I use a different measure of the tax rate

than Prescott, our results are consistent for the early 70s and the mid 90s. The timing of

tax changes, however, does not help explain the movement of hours worked during some other

sub-periods of the sample. The slight decrease in tax rates between 1950 and the mid 60s

causes an increase in hours worked in the model. Moreover, increasing taxes in the 90s push

hours worked down. All told, taxes do not appear to be sufficient for explaining the puzzle.

4.3 Persistent Shocks

As demonstrated by Campbell (1994), a positive shock to productivity that is more persistent

than a random walk causes consumption to increase more than the wage as individuals dissave

(i.e., borrow against higher expected future wage income). Because the intratemporal equi-

librium condition implies that hours worked are inversely related to the share of consumption

in output, such shocks could generate the negative correlation between lower-frequency hours

worked and output/TFP. However, if the model generated that negative correlation, it must

also generate a positive correlation between the consumption share and output, a pattern not

found in postwar U.S. data. Figure 8 shows lower-frequency GDP and the non-high-frequency
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consumption share (i.e., a linear trend is still in the consumption share). At lower frequencies,

the consumption share typically moves in the opposite direction of output.

4.4 Discussion

The above analysis points the way to a potential solution of the lower-frequency puzzle. The

key relationship discussed in this section has been the intratemporal equilibrium condition

equating the marginal product of labor (MPL) to the MRS between consumption and leisure,

where the MRS is a time-invariant, increasing function of market consumption and hours

worked. Rewriting equation (10),

(1− α)
A1−α

t Kα
t

Nα
t

≡MPLt = MRSt ≡ bNν
t Ct. (11)

For this equation to hold during an extended period of fast TFP growth while hours worked

decline requires that consumption (counterfactually) grows extremely quickly. Alternatively,

there could be a wedge in the equilibrium condition; that is, MPLt = Wedget ∗ MRSt.

Distortionary labor taxes provide such a wedge although they do not move as needed to

explain the lower-frequency fluctuations in postwar U.S. data.

Business cycle researchers have considered many explanations for this wedge at high fre-

quencies. Examples include taxes, sticky wages, unions, home production (Benhabib, Roger-

son, and Wright 1991), leisure-enhancing production [e.g., Greenwood and Vandenbroucke

(2005), Kopecky (2005)] and habit formation [Lettau and Uhlig (1999); Boldrin, Christiano,

Fisher (2001)] . In the next section I build on a habit formation story to develop a DSGE

specification that can rationalize the lower-frequency patterns in the data.

5 A Solution

The solution to the lower-frequency puzzle presented herein considers the hypothesis that

individuals derive utility from consumption and leisure relative to a “living standard”. As in

models with (external) habit formation, individuals’ consumption and labor supply decisions

are influenced by a state variable in preferences. Thus, the intratemporal MRS will no longer

be a time-invariant function of only market consumption and hours worked; there will be a

wedge between the “true” MRS and the “standard” MRS given in equation (11). This “living

standard”, denoted by Xt in Section 3, will also affect the MRS between consumption at

different dates, and thus, a complete general equilibrium analysis is needed to understand all

its implications for aggregate fluctuations.
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After describing and parameterizing a baseline living-standard model, I repeat the same ex-

periments performed in Section 4 to measure the model’s ability to explain the lower-frequency

puzzle. To demonstrate the model’s key features, I then consider various formulations and

parameterizations for the living standard. Finally, I discuss the model’s interpretation of the

postwar U.S. economy and the merits of alternative interpretations of the model, such as home

or leisure-enhancing production stories, relative to the living standard interpretation.

5.1 “Living Standard” Model

The “living standard” model deviates from the textbook RBC model in two ways: its specifica-

tions of the stochastic process for productivity and of preferences. First, to capture sustained

periods of rapid (stagnant) productivity growth, log TFP growth γa has the following stochas-

tic process:

γa
t = γt

t + zt − zt−1

zt = ρzzt−1 + εz,t, where εz v i.i.d. N(0, σ2
z)

γt
t = εγ,t ∼ i.i.d. Γ

(
µγ , σ

2
γ

)
with probability P

γt
t−1 with probability 1− P , (12)

where γt
t is the stochastic (log) growth rate of trend productivity Tt, zt reflects transitory

shocks, and the distribution Γ
(
µγ , σ

2
γ

)
is a truncated normal distribution with mean µγ and

variance σ2
γ . The shocks to the trend growth rate are occasional but persistent, whereas the

transitory shocks occur every period.

Second, for preferences I consider specifications of the momentary utility function (equation

(3)) that allow the living standard Xt to impact agents’ decisions. This requires η < 1.

Following Abel (1999), the living standard is a function of productivity and recent levels of

consumption per capita. Specifically,

Xt = Cφ1
t−1T

1−φ1
t (13)

where 0 ≤ φ1 ≤ 1. The special case with φ1 = 1 corresponds to the “catching up with the

Joneses” formulation in Abel (1990). The living standard is a function of Tt for a couple of

reasons. First, a stochastic trend Tt is used rather than a constantly growing trend, say µt
γ ,

because it seems reasonable that the standard of living in a country may grow faster at some

times and slower at others. Second, Tt is used rather than total productivity At to capture

the idea that changes in the living standard depend on permanent changes in productivity.
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Finally, including trend productivity in addition to lagged consumption is a reduced-form way

of capturing a forward-looking aspect of the living standard.

The state space for this model specification is St =
{
K̂t, γ

t
t , zt, γ

X
t , Ât, Ĉt−1

}
. The current

values of both the transitory shock to productivity zt and the trend growth rate of productivity

γt
t are needed to form expectations of future productivity growth. In general, the final three

state variables are all necessary for forming expectations of future growth of the living standard

γX
t+1, although for some parameterizations (e.g., φ1 = 0), a subset of these variables is sufficient.

5.1.1 Choosing Parameter Values

Many of the parameters are set as they were for the textbook RBC specification (see Section

4.1), while others, namely η and σ, which were previously pinned down by functional-form

assumptions, can now be chosen based on estimates from the labor supply literature. To

choose the productivity process parameters, I use techniques for estimating parameters of

state-space models with regime switches. Finally, I investigate the implications of various

functional forms for the living standard by considering various values for φ1.

Preference Parameters The first-order condition for labor input (equation 5) takes the

form

bNν
t C

η
t X

(1−η)
t = (1− τN )Wt,

which can be written, dropping constant terms, as

nt =
wt − ηct − (1− η)xt

ν

or

nt =
1
ν
ŵt −

η

ν
ĉt. (14)

Recall that lowercase letters denote logged variables and a “hat” denotes the variable has been

normalized by Xt; that is, ĉ = ln
(

C
X

)
. From equation (14), one sees that η would govern the

relative magnitude of the income elasticity of labor supply to the compensated wage elasticity in

a static labor supply context. Tables 1 and 2 of Blundell and MaCurdy (1999) report estimates

of the uncompensated wage elasticity and income elasticity from a number of studies, and thus,

one can infer the compensated wage elasticity. The income elasticity is typically substantially

smaller in magnitude than the compensated wage elasticity, although its relative magnitude

varies. η is set to 0.33 in the baseline model, and I will illustrate how alternative values affect

the results. σ = 1 implies a steady-state elasticity of intertemporal substitution of 0.64, within

the range of estimates from the literature.
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In the baseline model, φ1 = 0 so that the living standard is only a function of trend

productivity. I will also consider a “catching up with the Joneses” living standard, φ1 = 1, and

living standards that depend on both lagged consumption and trend productivity, 0 < φ1 < 1.

Productivity Parameters The parameters for the productivity distribution are obtained

by maximum likelihood estimation. A description of the estimator taken from Kim and

Nelson (1999) is provided in the technical appendix. The estimates include µγ = 1.0052

and σγ = 0.0022. These values imply a long-run growth rate of per-capita output of 2.1

per year, and because the distribution for γt is truncated at ±3 standard deviations, a trend

growth rate that is bounded between -0.6% and 4.8% per year. The parameters for the Z

process, ρz = 0.88 and σz = 0.0099, imply less unconditional variance of the cyclical shock

than in the textbook RBC model. Finally, the estimate for P implies that the trend growth

of productivity changes, on average, once every 70 quarters.

The parameters for the baseline “living standard” model are given in Table 7.

5.1.2 Results

I once again conduct the two experiments described in Section 4.1. Tables 8 and 9 report

average moments of high and lower-frequency fluctuations from 200 model simulations. The

baseline “living standard” specification performs noticeably better than the textbook RBC

model. Although the correlation between hours worked and output/TFP at lower frequencies

is not negative, the difference from high to lower frequencies is substantial. The correlation

between TFP and hours worked drops by 0.80 when moving from high to lower frequencies

(slightly larger than the change in the data), while Corr(Y,N) drops by 0.64 (less than the

change in the data but sizable). That these correlations are still positive at the lower fre-

quencies reflects the fact that I only consider shocks to TFP. Other researchers have included

a wide variety of alternative shocks (government spending, monetary shocks, etc.) within the

DSGE framework. Adding such realistic shocks would reduce the correlations between TFP

and other variables at all frequencies.

The choice of a simple model was made to most clearly illustrate the effects of the living

standard. Given this modelling decision, there are clear discrepancies between the moments

produced by the model and the data. Some of these can be fixed by considering alternative

values for parameters. For example, a higher elasticity of the labor supply
(

1
ν

)
would make

labor input more volatile [Hansen (1985), Rogerson (1988)]. Other discrepancies, like the
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decrease in the correlation of TFP and output from high to lower frequencies, could be fixed

by considering a richer model with more shocks.

The second experiment of simulating the model with the actual U.S. Solow residual as

the driving force is more complicated than it was for the textbook RBC model, because it

now requires a decomposition of productivity growth into trend and transitory components.

Alternative decompositions will change the model’s predictions through two channels: the

living standard and agents’ expectations. Because only the trend (and not the transitory)

part of productivity growth enters the living standard, any decomposition is an assumption

about how the living standard evolved over the postwar period. As for expectations, the

higher the trend component, the higher is the expected level of future productivity.

To illustrate how the living standard model works, I show the simulation results for the

case of one change in trend productivity growth. I use Bai and Perron’s (1998) methods for

identifying trend breaks in univariate time series to provide discipline for the decomposition.

At the 10% confidence level, the hypothesis that no trend breaks occurred in the productivity

growth series can be rejected in favor of the alternative hypothesis that one break occurred.

Moreover, these tests identify the date of the break as the second quarter of 1966. Given the

break date, I construct the series for the trend and transitory components
(
γT and z

)
in a way

that imposes orthogonality between the two series (to be consistent with the assumptions on

the stochastic processes) and minimizes the sum of the squared transitory shocks. Details are

provided in the technical appendix.18

Figure 9 displays the lower frequencies of the TFP series along with the hours worked and

output series from the model and the data. The hours worked series generated by the model is

roughly similar to the actual series as the 50s and 90s are times of relatively high labor input.

The one major discrepancy between the series is the increase in simulated hours worked during

the late 60s and early 70s. The effect of this increase in hours worked can also be seen in the

simulated output series in the bottom panel of Figure 9. This discrepancy could be reduced

in a couple of ways. The first is by adding more shocks to the model. Figure 10 shows the

impact of adding distortionary labor income taxes, which counteract some of the increase in
18I thank John Fernald and his research assistant, Andrew McCallum, for running the Bai-Perron statistical

tests on my TFP series. It is difficult to make the case one particular decomposition of productivity growth

over another. Although I report the results of my model simulations for the case of one break, note that

these tests can be used to check for an arbitrary number of breaks. In fact, the hypothesis of no breaks was

rejected in favor of the alternatives of 3 or 4 breaks as well. Moreover, even conditioning on the number of

breaks, Fernald (2005) explains that there is considerable uncertainty about the exact break dates. Thus, this

experiment should be seen as illustrating the effects of a plausible living standard, rather than literally arguing

for a living standard that grew at one rate before 1966:2 and at another rate afterwards.
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hours worked during the late 60s.

The second way to improve the model’s fit would be to consider the impacts of learning in

the model. Figure 9 displays hours worked from a simulation in which individuals perfectly

recognize a downward shift in the trend rate of productivity in the second quarter of 1966. The

impact of such a drop is for hours worked to increase due to the negative effect on permanent

income of lower expected future productivity growth. As shown by Edge, Laubach, and

Williams (2004), if individuals instead attributed part of this drop in productivity to temporary

shocks, they would not have as much of an incentive to increase hours worked. The technical

appendix (8.4) discusses some details for adding learning (i.e., signal extraction) to the model,

although results of this exercise are not yet available.

To understand the model’s ability to capture the decrease in hours worked at times of fast

TFP growth and the importance of the living standard for driving this result, it is useful to

consider the response of hours to a permanent shock to the trend growth rate of productivity

γg. Figure 11 displays the response of hours worked to a one-standard-deviation increase

in γg for different values of the income elasticity η. For the baseline living standard model

(η = 0.33), hours worked decline in the initial period and continue to decline as the economy

transitions to a new steady-state. Thus, hours worked can have an extended decline while

output and TFP grow at a fast rate. For a model without a living standard (η = 1), the

initial response of hours is greater due to the stronger income effect, but in the long-run,

hours worked actually increase.19 Thus, without a living standard, a prolonged decrease in

hours worked could only be generated by many positive shocks to γt arriving in succession.

Not only would a string of successive shocks cause consumption to increase more rapidly than

output (as discussed in Section 4.3), it would also make hours worked negatively correlated

with productivity at high frequencies.

In contrast, the living standard model can generate the positive high-frequency correlation

between hours worked and TFP/output at the same time as it provides a force for the negative

correlation at lower frequencies. Consider the intratemporal equilibrium condition

nt =
wt − ηct − (1− η)xt

ν
=

(η − α)tt + (1− α)zt + αkt − ηct
ν + α

, (15)

19I considered a version of the model with the trend-break productivity process but no living standard (η = 1).

The results of simulating the model with actual Solow residuals as the driving force are very similar to the

“catching up with the Joneses” model shown in Figure 12. In comparison to the living standard model, hours

worked do not decline as much in the 50s or increase as quickly in the 90s. Moreover, the break in trend

productivity growth in the second quarter of 1966 causes a stronger increase in labor input. For the monte-

carlo exercise, the correlation between hours worked and output (TFP) only drops by 0.27 (0.19) when moving

from high to lower frequencies.
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where the second equality follows from w = MPL and x = t. The transitory (z) shocks will

drive much of the high-frequency correlation but will be less important at the lower frequencies

because of their temporary nature. This equation also provides another way of framing the

discussion of the previous paragraph. Abstracting from temporary shocks to productivity

(z = 0), log effective units of capital (k − t) are more responsive to a change in the growth rate

of productivity γt than are log effective units of consumption (c− t). (This must be true in

order for long-run hours worked to decline when η = α = 0.33.) For smaller values of η, the

long-run decline in hours worked associated with an increase in the growth rate of productivity

will be even greater.

5.2 Alternative “Living Standard” Formulations

The living standard in the baseline specification of the model is simply the trend part of

productivity:

xτ = tτ =
τ∑

s=1

γt
s,

but alternative formulations of the living standard can also be considered. This is useful

for comparing the model to other habit formation models in the business cycle literature and

for demonstrating the key features of the living standard for explaining the lower-frequency

puzzle. I first describe various alternatives and then present some summary statistics from

simulations of these models.

By setting φ1 = 1, the living standard is fully backwards-looking, a function only of lagged

aggregate consumption:

xτ = cτ−1.

This is the “catching up with the Joneses” specification considered by Abel (1990). More

generally, the living standard could be a weighted average of trend growth and past levels of

consumption, with φ1 denoting the relative weight of lagged consumption:

xτ = φ1cτ−1 + (1− φ1)
τ∑

s=1

γt
s.

To capture the idea that individuals may overreact, becoming very optimistic (pessimistic)

during times of fast (slow) growth, I allow the living standard to increase more rapidly than

the trend growth of TFP during prosperous times and to not grow as quickly during times

of relative stagnation. This is done by setting the parameter λ > 1 for the living standard

specification
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xτ = λ
τ∑

s=1

(
γt

s

)
+ τ (1− λ) ln (µγ) .

Note that λ = 1 delivers the baseline version of the living standard, while λ = 0 implies a

constantly growing living standard.20

Table 10 reports the difference between the average correlation of hours worked with output

and TFP at high and lower frequencies for these various formulations of the living standard.

The formulations produce similar high-frequency correlations of around 0.90, but the corre-

lations generated at lower-frequencies are quite different. Living standards which grow (on

average) at least as quickly (slowly) as productivity during extended periods of fast (slow)

productivity growth are best able to generate the drop in the correlation at lower frequencies.

Figure 12 shows the lower-frequency fluctuations in the hours worked series that result

from using the actual Solow residuals as the driving force for each of these specifications.

The specifications with living standards that are mostly a function of the stochastic trend

of productivity (i.e., “baseline” and “over-reaction”) do best at replicating the movement in

hours worked seen in the data. The key is that the “true” MRS, bNν
t C

η
t X

(1−η)
t , grows quickly

at times of fast productivity growth. Note that when the living standard simply grows at

a constant rate, the model performs more poorly than the textbook RBC model because the

income effect is smaller in the living standard model (η = 0.33) and the wedge in the MRS

(X) does not grow quickly.

5.3 Alternative Interpretations of the Model

The model considered above takes changes in productivity as the exogenous driving force of

the economy and specifies that persistent changes in productivity enter into a living standard.
20Another formulation for the living standard is one that is forward-looking, depending on expectations of

future productivity. It could take the form

xτ = Eτ

{
aτ+j

(1− α)

}
− j ln (µγ)

where Et (aτ+j) is the expected productivity level j periods in the future and the other terms are simply for

scaling purposes. The living standard could then be expressed as

xτ = tτ + f1

(
j, P, γt

τ − ln (µγ)
)

+ f2 (j, ρz, zτ )

where f1 is an increasing function of j, P , and the trend growth rate γt
τ , and f2 goes to 0 as j grows. For j

sufficiently large, the transitory shock has little weight in the living standard. This forward-looking specification

is similar to the baseline specification, xτ = gτ , although changes in the trend growth rate have an additional

impact through f1.
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Individuals derive utility not just from the absolute levels of goods and leisure they consume,

but from these levels relative to the standard. Importantly, an increase in the living standard

increases the MRS between consumption and leisure. The high average productivity (wage)

growth in the 50s and 60s is thus seen as driving the contemporaneous increase in leisure time,

while the slow productivity growth in the last quarter of the 20th century is interpreted as a

factor that led to increased market work through the 80s and 90s. As discussed before, the

usual income effect of a wage change on labor supply is not strong enough to generate these

patterns, and thus, a living standard explanation is proposed.

Other macroeconomic models share the mathematical structure of the living standard

model, including models with (external) habits and various forms of non-market production,

but there are reasons why I have chosen to interpret the state variable in preferences as a living

standard. First, the distinction between a living standard and an external habit is slight but

important. The main difference is that the living standard depends on growth in productivity

(which is closely tied to income and wages) and not solely on lagged consumption. The idea

of using trend productivity was to capture the idea that there may be a forward-looking aspect

of agents’ reference level (see Footnote 20). As shown in the previous subsection, allowing

for productivity in the reference level, and not solely lagged consumption, is critical for the

model’s performance.

A leisure-enhancing production interpretation of the model is similar to the living stan-

dard interpretation, although the mechanism that drives the increased desire for leisure in

prosperous times is different [Greenwood and Vandenbroucke (2005), Kopecky (2005)]. The

increased desire for leisure would result from an increase in the consumption of goods that

are complements of leisure time. Examples of such goods include books, radios, televisions,

admissions to concerts, and travel. In periods of rapid growth, declines in the relative price of

leisure goods could explain the negative correlation between hours worked and output/TFP.

Figure 13 plots the relative price of a basket of leisure goods over the postwar period, as

constructed by Kopecky (2005).21 Periods of fast (slow) productivity growth do not appear

to coincide with drops (increases) in this measure of the relative price of leisure goods, making

this explanation less appealing than the living standard explanation. There is, however, an

important caveat. The measure of the relative price in Figure 13 does not correct for changes

in quality or the variety of leisure goods. If, for example, improvements in the quality of

leisure goods are greater than those for the average good in the CPI basket at times of fast

productivity growth, a corrected relative price series could display the movements needed for

this explanation to work. Pursuing these corrections is left for future research.
21I thank Karen Kopecky for making this data available.
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Home production provides yet another interpretation of the state variable in preferences

that plays such an important role in the “living standard” model. If the consumption of

home-produced goods increase rapidly during times of fast market productivity growth, the

marginal utility of consumption can be low enough to rationalize the contemporaneous de-

crease in market hours worked. In this interpretation, the 50s and 60s were times when

individuals consumption of non-market goods grew rapidly, either because they spent more

time in homework or because the productivity of homework grew rapidly. Figure 14 shows an

estimate of the number of annual hours per capita spent in homework over the postwar period,

as constructed by Ramey and Francis (2005).22 Since homework apparently decreased over

the first few decades of the sample period, the home production story would require that home

productivity grew extremely fast in this period, much faster than market productivity. It is,

of course, possible that home productivity does grow faster than market productivity during

times of fast market productivity growth, although one may think that new technologies first

impact the market sector before diffusing to the non-market sector.

6 Conclusion

Long-run economic growth and business cycles have been two of the most active areas of

macroeconomic research. This paper has focused on the often overlooked gap in between,

lower-frequency fluctuations. One striking fact in U.S. postwar data is that hours worked per

capita is negatively correlated with both output per capita and TFP at lower frequencies, while

these variables are positively correlated at high frequencies. The hypothesis proposed herein

is that extended periods of above average growth in productivity lead to rapid output growth

and decreases in hours worked, while temporary increases in productivity lead to temporary

increases in both output and hours worked. The mechanism that delivers the lower-frequency

behavior in a DSGE model is a “living standard” that changes smoothly over time, growing

quickly (sluggishly) in times of fast (slow) average productivity growth.

An explanation that relies on unobserved changes in preferences is admittedly unsatisfac-

tory in the sense that one would like to find measurable economic variables that can explain

the lower-frequency fluctuations. Thus, instead of viewing this paper as evidence of the im-

portance of a “living standard”, it can alternatively be seen as (i) a demonstration that some

explanations (i.e., taxes or various expectations of future growth) will not work and (ii) a

preliminary step for finding explanations that will. The next step could include moving out-

side of the representative agent framework to consider important forms of heterogeneity, like
22I thank Valerie Ramey and Neville Francis for sharing their data.
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the changing demographic composition of the population. Since individuals of, say, different

age arguably have different preferences, such a model may provide an understanding of the

apparent preference shift.

Other directions in which future work on this topic is likely to proceed include: (i) ex-

tending the model to include learning about trend breaks in productivity growth, which may

improve the model’s performance around breaks and could also be relevant for thinking about

other interesting patterns in the data, such as asset-pricing puzzles; and (ii) considering other

lower-frequency patterns, including the tremendous medium-run variation seen in cross-country

growth experience.
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7 Data Appendix

7.1 Variable Definitions

The following two tables contain the baseline and alternative variable definitions considered in

Section 2. All data series were converted from nominal to real units using the GDP deflator.

Baseline Variable Definitions
Variable Measure

Output (Y) Gross Domestic Product

Consumption (C) Personal Consumption Expenditures

Investment (I) Gross Private Domestic Invest. (Fixed + Inventories)

Hours Worked (N) Hours of all persons (Business Sector)

Capital (K) Net Stock of Private Produced Assets (Fixed + Inv.)

TFP (A) A = Y/(K0.333N0.667)

Labor Productivity (Y/N) Y/N

Return to Capital (r) Capital Share of Income Multiplied by Output to

Capital Stock Ratio minus the Depreciation Rate

Alternative (Broader) Data Definitions

Variable Measure

Output (Y) GDP + Flow of Services from Cons. Durables

Flow of Services from Govt. Capital Stock

Consumption (C) Consumption of Nondurables, Services, and

Flow of Services from Consumer Durables

Investment (I) GPDI (Fixed + Inv.) + Cons. Dur. + Govt. Invest.

Hours Worked (N) Hours of all persons (Domestic)

Capital (K) Net Stock of Private Produced Assets (Fixed + Inv.)

+ Cons. Durables + Govt. Fixed Assets

TFP (A) A = Y/(K0.333N0.667)

Labor Productivity (Y/N) Y/N

Return to Capital (r) Capital Share of Income Multiplied by Output to

Capital Stock Ratio minus the Depreciation Rate

Govt Spending (G) Govt. Cons. + Service Flows from Govt. Capital
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7.2 Sources

The specific sources for the data listed above are as follows:

National account, post-1947, quarterly

www.bea.gov, NIPA Table 1.1.5 (in bil. $)

Gross domestic product (GDP)

Personal consumption expenditures (PCE)

Gross private domestic investment (GDPI)

Government consumption expenditures and gross investment

www.bea.gov, NIPA Table 1.1.6 (in bil. chained 2000 $)

Gross domestic product (GDP)

www.bea.gov, NIPA Table 5.9 (in bil. $) (annually, 1951 - 2005)

Private Produced Assets (Fixed Assets and Inventories)

www.bea.gov, NIPA Table 5.2.5 (in bil. $), annually

Gross Government Investment

www.bea.gov, NIPA Table 1.10 (in bil. $)

Private consumption of fixed capital (i.e., depreciation)

Net operating surplus of private enterprises

Gross domestic income (GDI)

www.bea.gov, NIPA Table 1.12 (in bil. $)

Proprietor’s Income with IVA and CCAdj

Business current transfer payments (net)

www.bea.gov, NIPA Table 6.9B, annually

Domestic and Private Hours Worked

Population, post-1947, quarterly

Economic Report of President, Table B-34
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Hours worked, post-1947, quarterly

Global Insights Basic Economics Database, series LBMN

Fixed Assets, post-1947, annually

www.bea.gov, FAT Table 1.1 (in bil. $)

Stock of Government Fixed Assets

Stock of Consumer Durable Goods

www.bea.gov, FAT Table 1.3 (in bil. $)

Depreciation of Government Fixed Assets

Depreciation of Consumer Durable Goods

7.3 Constructing Quarterly Variables from Annual Data

The quarterly capital stock is constructed as follows: the private capital stock in the first

quarter of each year is taken from NIPA Table 5.9 and converted to real terms using the GDP

deflator. Gross private fixed investment and private consumption of fixed capital (both in real

terms at quarterly rates) are used to construct the capital stock for quarters 2-4 and quarter

1 of the next year. The discrepancy between the constructed quarter 1 capital stock and the

quarter 1 capital stock taken from Table 5.9 is then equally divided between the 4 quarters of

the previous year.

A similar method is used for the construction of quarterly government fixed assets and the

stock of consumer durables. The service flows from these stocks are then calculated following

Cooley and Prescott (1995).

The measure of domestic hours worked is constructed by scaling the quarterly private hours

worked (LBMN series) by the annual ratio of domestic to private hours found in NIPA Table

6.9.

The (net) return to capital is capital’s share of income multiplied by the ratio of output

to the capital stock minus the depreciation rate
(
α Y

K − δ
)
. Capital’s share of income is

constructed as

α =
Priv net oper surp + Cons of fix cap - Proprietor’s inc. - Bus. trans. pmts

GDI - Proprietor’s income - Business transfer pmts
.
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8 Technical Appendix

Throughout this appendix, any notation not explicitly defined is consistent with the notation

used in the rest of the paper.

8.1 Solution Method

To solve the model, I use a policy-function iteration approach (for example, see sections 17.5-

17.9 of Judd (1998)) that operates directly on the necessary and sufficient conditions for an

equilibrium. In theory, the equilibrium can be described as functions, Ĉ(s), N(s), K̂ ′(s), that

satisfy the equilibrium conditions, equations (4)-(6), at all points in the state space, s ∈ S.

Policy-function iteration is implicitly defined by

1 = βE


h
(
γX+

)
γX+ uC

(
Ĉj(s+), N j (s+)

)
uC

(
Ĉj+1(s), N j+1(s)

) [(
Â+

)1−α
FK

(
K̂+, N j

(
s+

))
+ 1− δ

] ,

−
uN

(
Ĉj+1(s), N j+1(s)

)
uC

(
Ĉj+1(s), N j+1(s)

) = Â1−αFN

(
K̂,N j+1(s)

)
,

Ĉj+1(s) + K̂ ′j+1
(s)− (1− δ)K̂ + Ĝ = Â1−αF

(
K̂,N j+1(s)

)
.

Given the functions Ĉj , N j , K̂ ′j and some s ≡ (K̂, z, γT , Â, γX , Ĝ), I solve for the values of

Ĉj+1(s), N j+1(s), K̂ ′j+1
(s) that solve the above system; since this can be done for each s, I

have the functions Ĉj+1, N j+1, K̂ ′j+1
. The procedure is repeated until convergence.

To implement this procedure on the computer, one needs to choose how to approximate the

policy functions and how to approximate the expectation in the intertemporal euler equation.

Because the state space is multi-dimensional, approximating the policy function could require

solving the equilibrium conditions at a large number of points in the state space. Fortunately,

Smolyak’s algorithm provides an efficient way of approximating smooth multivariate functions.

The algorithm consists of both a specification of the grid of points, H ∈ S, at which to solve for

the policy functions and the procedure for interpolating between these points. I use complete

polynomials of degree 4 to approximate the equilibrium. For a more detailed description

of Smolyak’s method, please see Krueger and Kubler (2004), especially sections 3.3 - 3.5.

For approximating the expectation in the intertemporal euler equation, I use the appropriate

quadrature formulas from chapter 7 of Judd (1998).
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To assess the quality of the solution, I compute relative Euler equation errors as in Judd

(1992). For each of the three equilibrium conditions, I compute

errt =
∣∣∣∣(Right-Hand Side)t

(Left-Hand Side)t

− 1
∣∣∣∣ .

I simulate the economy for 10,000 periods and record the maximal and average error along the

simulated path. For the intertemporal euler equation and resource constraint, the maximal

error is typically on the order of 10−3 and the average error on the order of 10−4. The

intratemporal euler equation can actually be solved exactly for N(s) given the solution for

Ĉ(s) and K̂ ′(s). Thus, by construction, the error for this equation is 0.

8.2 Markov Chain for Persistent Shocks

In order to facilitate the choice of parameters (discussed in the next subsection) and to allow

for a ‘learning’ extension of the model, the stochastic process for trend productivity growth γT

in the “living standard” model is characterized by the following time-invariant Markov chain:

γ =



γ1

...

γM


, πγ =



π1
γ

...

πM
γ



p =



1− P
Pπ2

γ

1−π1
γ

· · · PπM
γ

1−π1
γ

Pπ1
γ

1−π2
γ

1− P

...
. . .

Pπ1
γ

1−πM
γ

1− P


where γ ∈ RM records the possible values for γT , πγ records the unconditional probability of

being in each state, and p is a transition matrix which records the probabilities of moving from

one value of γT to another in one period. γ and πγ are chosen so that the distribution from

which trend productivity growth is drawn has approximately a normal distribution with mean

µγ and variance σ2
γ . Following Tauchen (1986),

γm = µγ +
(

2 (m− 1)
M − 1

− 1
)
∗ Trunc ∗ σγ , m = 1, ...,M.

Trunc = 3 and M = 13 for all specifications of the model. Thus, there are 13 possible values

for γT that are equispaced over the interval [µγ − 3σγ , µγ + 3σγ ] . Let w = γm − γm−1 and
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Φ (·) be the standard normal cumulative distribution function. Then, if m is between 2 and

M − 1, set

πm
γ = Φ

(
γm − µγ + w/2

σγ

)
− Φ

(
γm − µγ − w/2

σγ

)
,

otherwise,

π1
γ = Φ

(
γ1 − µγ + w/2

σγ

)
and πM

γ = 1− Φ
(
γM − µγ − w/2

σγ

)
.

8.3 Estimating Parameters of Persistent Shock Process

To estimate the parameters of the productivity process of the “living standard” model, I use

the maximum likelihood estimation procedure described by Kim and Nelson (1999), which is a

summary of the methods developed in Kim (1994). I first represent the productivity process

in state-space form, then describe the Kim filter (an extended version of the Kalman filter that

allows for regime switches), and finally detail the approximate maximum likelihood estimation

of the parameters of the productivity process.

8.3.1 State-Space Form

The productivity process can be represented as a state-space model with regime switching.

There are M regimes: one for each possible value of γT .

Letting γA
t = ln

(
At

At−1

)
, a state-space representation of the growth rate of TFP can be

written compactly in the form:

Measurement Equation: γA
t = x

′
at +BSt

Transition Equation: at = Tat−1 + Rηt

Shocks: ηt v N(0, Q)

with

at =

[
zt

zt−1

]
, x =

[
1

−1

]
BSt = ln

(
γSt

)
for St = 1, ...,M

T =

[
ρz 0

1 0

]
, R =

[
1

0

]
, and η = εz.
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The variance-covariance matrix of the underlying shocks is

Q = σ2
z .

Transition probabilities for the Markov-switching variable St are given by

p ≡



p11 p12 · · · p1M

p21

...
. . .

pM1 pMM


=



1− P
Pπ2

γ

1−π1
γ

· · · PπM
γ

1−π1
γ

Pπ1
γ

1−π2
γ

1− P

...
. . .

Pπ1
γ

1−πM
γ

1− P


where pij = Pr[St = j|St−1 = i].

8.3.2 Kim’s (1994) Filter for State-Space Models with Markov-Switching (Kim

and Nelson, Section 5.2)

The filter for the state-space model with Markov switching is a combination of extended ver-

sions of the Kalman filter and the Hamilton filter, along with appropriate approximations.

Here I describe the filter for the state-space representation discussed above.

First, I will define some notation. Let ψt−1 denote the vector of observations available as

of time t − 1, ψt−1 = {γA
1 , ..., γ

A
t−1}. The goal is to form a forecast of the unobserved state

vector at based not just on ψt−1 but also conditional on the random variable St taking on the

value j and on St−1 taking on the value i:

a(i,j)
t|t−1 = E[at|ψt−1, St = j, St−1 = i].

The proposed algorithm calculates a battery ofM2 such forecasts for each date t, corresponding

to every possible value for i and j. Associated with these forecasts are M2 different mean

squared error matrices:

P(i,j)
t|t−1 = E[(at − at|t−1)(at − at|t−1)

′|ψt−1, St = j, St−1 = i].

The key part of the algorithm is to reduce the (M×M) posteriors (a(i,j)
t|t and P(i,j)

t|t ) into M

posteriors (aj
t|t and Pj

t|t) to complete the Kalman filter described below. Kim’s (1994) filter

contains the following steps:
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1. Run the Kalman filter given in equations (16)-(21) for i, j = 1, 2, ...,M.

a(i,j)
t|t−1 = Tai

t−1|t−1 (16)

P(i,j)
t|t−1 = TPi

t−1|t−1T
′
+ RQR

′
(17)

υ
(i,j)
t|t−1 = γA

t − x
′
a(i,j)

t|t−1 −Bj (18)

f
(i,j)
t|t−1 = x

′
P(i,j)

t|t−1x (19)

a(i,j)
t|t = a(i,j)

t|t−1 + P(i,j)
t|t−1x[f (i,j)

t|t−1]
−1υ

(i,j)
t|t−1 (20)

P
(i,j)
t|t = (I−P(i,j)

t|t−1x[f (i,j)
t|t−1]

−1x
′
)P(i,j)

t|t−1 (21)

2. Calculate Pr[St, St−1|ψt] and Pr[St|ψt], for i, j = 1, 2, ...,M.

Pr[St = j, St−1 = i|ψt−1] = Pr[St = j|St−1 = i] ∗ Pr[St−1 = i|ψt−1]

f(γA
t |St−1 = i, St = j, ψt−1) =

exp
{
−1

2υ
(i,j)′

t|t−1

(
f

(i,j)
t|t−1

)−1
υ

(i,j)
t|t−1

}
(2π)

N
2 |f (i,j)

t|t−1|
1
2

f(γA
t , St−1 = i, St = j|ψt−1) = f(γA

t |St−1 = i, St = j, ψt−1) ∗

Pr[St = j, St−1 = i|ψt−1]

f(γA
t |ψt−1) =

M∑
j=1

M∑
i=1

f(γA
t , St−1 = i, St = j|ψt−1) (22)

Pr[St = j, St−1 = i|ψt] =
f(γA

t , St−1 = i, St = j|ψt−1)
f(yt|ψt−1)

Pr[St = j|ψt] =
M∑
i=1

Pr[St = j, St−1 = i|ψt]

3. Using these probability terms, collapse M ×M posteriors in (20) and (21) into M × 1

using the following equations:

aj
t|t =

∑M
i=1 Pr[St = j, St−1 = i|ψt]a

(i,j)
t|t

Pr[St = j|ψt]

Pj
t|t =

∑M
i=1 Pr[St = j, St−1 = i|ψt]

{
P(i,j)

t|t +
(
aj

t|t − a(i,j)
t|t

) (
aj

t|t − a(i,j)
t|t

)′}
Pr[St = j|ψt]

4. To start the filter, the following initial values are needed:

aj
0|0 = 0

vec
(
Pj

0|0

)
= (I−T⊗T)−1vec (RQ)

Pr(S0 = j) = πj
γ
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Note that vec (RQ) is not comformable to the other matrices. For this step, in a slight

abuse of notation, let R and Q be 2 × 2 matrices, where the last column of R and last

row and last column of Q are zeros.

8.3.3 Approximate Maximum Likelihood Estimation

The filter computes the density of γA
t conditional on past information, f(γA

t |ψt−1), t =

1, 2, ..., T, from equation (22). The approximate log likelihood function is given by

LL = ln
[
f

(
γA

1 , ..., γ
A
T

)]
=

T∑
t=1

ln
[
f

(
γA

t |ψt−1

)]
. (23)

To estimate the parameters of the model, I use a nonlinear optimization procedure to maximize

(23) with respect to the underlying unknown parameters, {ρz, σz, µγ , σγ , P} .

8.4 Decomposing TFP into Trend and Cyclical Components

8.4.1 Bai-Perron

For a model with both persistent and transitory shocks to productivity growth, feeding the

actual U.S. Solow residuals through the model requires a decomposition of productivity growth

into the two components. Bai and Perron’s (1998) methods for identifying trend breaks in

univariate time series are used to identify break dates. Let B be the number of breaks and

τ1, ..., τB denote the dates of the breaks.

Given the logged Solow residuals (aτ ) and the break dates {τ1, ..., τB}, I construct the series{
γt

τ

}
and {zτ} by running the following OLS regression with serially correlated errors:

aτ = ς + [Γ1D1 + ...+ ΓB+1DB+1] τ + ετ ,

whereD1 = 1 for τ ≥ 1, Db = 1 for τ ≥ τb−1, b = 2, ..., B+1, and ετ is an AR(1) process. Then,

for τb−1 < τ ≤ τb, γt
τ =

∑b
i=1 Γi and zτ = ετ . This construction imposes the orthogonality of

γt and z and minimizes the sum of the squared transitory shocks.

8.4.2 Kim Filter

An alternative way to discipline the decomposition of productivity growth into trend and

transitory components is to apply the Kim filter as described in Section 8.3.2. If the economic
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agents in the model know the underlying processes for γt and z but only see the realization of

productivity growth γa, the Kim filter could be used to solve the signal extraction problem.
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Table 1: Moments of High-Frequency Fluctuations: U.S. 1950:1 - 2005:1
Standard SD relative Correlation Correlation First-order

Deviation to Y with Y with A Autocorrelation

Y 1.56 1 1 0.58 0.83

C 1.18 0.76 0.77 0.46 0.76

I 7.44 4.77 0.84 0.48 0.79

N 1.70 1.09 0.86 0.11 0.88

Y/N 0.87 0.56 0.12 0.83 0.70

r 0.33 0.21 0.66 0.664 0.74

A 0.92 0.59 0.58 1 0.74

The variables are GDP (Y), consumption (C), investment (I), hours

worked (N), labor productivity (Y/N), the net realized return to capital (r),

and TFP (A). All quantities are in real per capita terms, and all time series

(except returns to capital) are in logs.

Table 2: Moments of Lower-Frequency Fluctuations: U.S. 1950:1 - 2005:1
Standard SD Relative Correlation Correlation First-order

Deviation to Y with Y with A Autocorrelation

Y 3.21 1 1 0.92 0.997

C 2.40 0.75 0.76 0.58 0.997

I 6.21 1.94 0.49 0.47 0.995

N 3.82 1.19 -0.31 -0.61 0.998

Y/N 5.71 1.78 0.77 0.93 0.999

r 0.61 0.19 0.38 0.19 0.997

A 4.67 1.45 0.92 1 0.999

All quantities are in real per capita terms, and all time series (except

returns to capital) are in logs.
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Table 3: Parameters for Textbook RBC Model
σ β η ν b α δ µγ ρz σz

∞ 0.987 1.0 1.5 30 0.333 0.015 1.0052 0.95 0.0105

Table 4: Avg. Moments of High-Freq. Fluctuations: Textbook RBC
Standard SD Relative Correlation Correlation First-order

Deviation to Y with Y with A Autocorrelation

Y 1.07 1 1 0.998 0.69

C 0.36 0.33 0.92 0.89 0.77

I 4.08 3.80 0.99 0.99 0.68

N 0.30 0.28 0.98 0.99 0.68

Y/N 0.78 0.72 0.997 0.99 0.70

r 0.04 0.03 0.97 0.98 0.68

A 0.87 0.81 0.998 1 0.68

Table 5: Avg. Moments of Lower-Freq. Fluctuations: Textbook RBC
Standard SD Relative Correlation Correlation First-order

Deviation to Y with Y with A Autocorrelation

Y 2.08 1 1 0.98 0.997

C 1.51 0.73 0.88 0.79 0.998

I 5.61 2.70 0.88 0.95 0.996

N 0.40 0.19 0.73 0.84 0.995

Y/N 1.81 0.87 0.98 0.94 0.997

r 0.05 0.02 0.43 0.58 0.996

A 1.42 0.69 0.98 1 0.996
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Table 6: Parameters for Baseline “Living Standard” Model
σ β η ν b φ1 α δ

1.0 0.987 0.33 1.5 20 0 0.333 0.015

µγ σγ P ρz σz

1.0047 0.0022 0.0144 0.88 0.0099

Table 7: Avg. Moments of High-Freq. Fluctuations: Living Standard
Standard SD Relative Correlation Correlation First-order

Deviation to Y with Y with A Autocorrelation

Y 1.06 1 1 0.99 0.66

C 0.46 0.43 0.86 0.85 0.70

I 3.86 3.64 0.97 0.96 0.65

N 0.37 0.35 0.98 0.97 0.66

Y/N 0.70 0.66 0.99 0.99 0.67

r 0.04 0.03 0.97 0.99 0.66

A 0.82 0.77 0.99 1 0.66
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Table 8: Avg. Moments of Lower-Freq. Fluctuations: Living Standard
Standard SD Relative Correlation Correlation First-order

Deviation to Y with Y with A Autocorrelation

Y 3.28 1 1 0.94 0.998

C 2.79 0.85 0.95 0.85 0.999

I 6.06 1.85 0.90 0.91 0.997

N 0.51 0.16 0.34 0.17 0.997

Y/N 3.15 0.96 0.98 0.96 0.998

r 0.07 0.02 0.43 0.65 0.997

A 2.50 0.76 0.94 1 0.998

Table 9: High-Frequency minus Lower-Frequency Labor Moments

Correlation Correlation

φ1 λ with Y with A

Data 1.19 0.75

Baseline: Stochastic Trend 0 1 0.64 0.80

Consumption and Trend 0.5 1 0.41 0.45

“Catching up with Joneses” 1 1 0.30 0.22

Constant Trend 0 0 0.02 0.01

Accelerated Stochastic Trend 0 1.05 0.70 0.87
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